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Abstract: Connective spaces generalize the concept of connectedness. In this paper, Some facts and concepts 

about the connective spaces including different connective substructures is presented. A method  of 

representation of finite connective spaces by simple graphs are described. 
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Introduction 

The concept of connectivity is very important in the 

analysis, this motivated 'G. Matheron & J. Serra' 

(in 1988) to propose an axiomatic approach to 

connectivity. Their approach is based on the 

observation that the most standard notions of 

connectivity share the properties that the empty set 

and the singletons of the underlying space are 

connected, and that unions of connected objects are 

connected. These properties may be considered to 

be a minimal set  of desirable requirements for 

connectivity. This work also was pursued by 

'Christian Ronse', S. Dugowson and others.  In 

2006, Muscat & Buhagiar  introduced a special 

case (satisfying some additional properties) of the 

spaces studied by  'G. Matheron and J. Serra'  

which called connective spaces. A connective 

space is a pair (𝑋, 𝒞) of a non-empty set 𝑋 and a 

collection  𝒞 of subsets of 𝑋 with a certain 

properties. This paper presented idea of 

representation of finite connective spaces by 

simple directed acyclic graphs which so called the 

generic graphs also it contained some basic results 

for our further work.  

Many conventional high-voltage power supply 

designs can be used to produce the short duration 

voltage pulse to form the plasma discharge [6, 7].  

Temporal jitter in the induced current pulse arises 

from the stochastic nature of the avalanche 

ionisation process and is crucially dependent on the 

rise time of the voltage pulse, which should be 

minimised. It is also desirable characteristic of to 

minimise applied voltage for full ionisation to 

reduce electrical noise in the experimental  

environment. The goal here is to investigate the 

hydrogen-filled capillary discharge waveguide for 

the use of laser wakefield acceleration.  

2    Experimental Setup 

The work presented here was carried out in the 

TOPS laser laboratory of the University of 

Strathclyde. It involved testing of the waveguides 

to analyse their plasma discharge characteristics, 

which can be used in experiments such as laser 

wakefield acceleration [8,9].  

The Theory of Methods 

Definition 1.[2]  A connective space (𝑋,𝒞) is a set 

𝑋 together with a collection of subsets 𝒞 , such that 

the following axioms hold: 

(𝑖)∀ 𝐶 ⊆ 𝒞, ⋂𝐶 ≠ ∅ ⟹ ⋃𝐶 ∈ 𝒞  . 
(𝑖𝑖)∀ 𝑥 ∈ 𝑋 ⟹ {𝑥} ∈ 𝒞 . 
(𝑖𝑖𝑖) Given  any non-empty sets 𝐴 , 𝐵 ∈ 𝒞 with 𝐴 ∪
𝐵 ∈ 𝒞,then  ∃ 𝑥 ∈ 𝐴 ∪ 𝐵  

such that {𝑥} ∪ 𝐴 ∈ 𝒞  and   {𝑥} ∪ 𝐵 ∈ 𝒞. 
(𝑖𝑣) If   𝐴, 𝐵, 𝐶𝑖  ∈ 𝒞 are disjoint, ∀𝑖 ∈ 𝐼 and  𝐴 ∪
𝐵 ∪ ⋃ 𝐶𝑖𝑖∈𝐼 ∈ 𝒞, then ∃𝐽 ⊆ 𝐼 such that   𝐴 ∪
⋃ 𝐶𝑗𝑗∈𝐽 ∈ 𝒞   and   𝐵 ∪ ⋃ 𝐶𝑖𝑖∈𝐼−𝐽 ∈ 𝒞 . 

The set 𝑋 is called Carrier of the space (𝑋, 𝒞) , and 

the collection 𝒞 is called the connective structure  

or connectology of 𝑋, and its elements are called the 

connected subsets of 𝑋 .  

A connective space is called finite if its carrier is a 

finite set. 

Remark 2   
(1)  In the previous definition, we can add the 

axiom that the empty set is connected although this 

follows from (i) . 
(2)  In connective spaces, the connected sets with 

two elements are called edges, and the spaces that 

satisfy (i) and (ii) only, will be called c-spaces and 

the corresponding 𝒞 a c-structure.   
 Example 1 
1. Topological spaces with the connected sets are 

connective spaces . 

2. The real line ℝ together with all intervals and 

singletons is a connective  space, and is called the 

real connective space.  

3. Let 𝑋 be any set, the collection 𝒟 = {∅, {𝑥}: 𝑥 ∈
𝑋} is a connective structure on   𝑋 and (𝑋, 𝒟) is 

called the discrete connective space. The collection 

ℐ =  𝒫(𝑋) is also a connective structure on 𝑋 and 

(𝑋, ℐ) is called the indiscrete connective space. 

Remark 3  Connective structures of a set 𝑋 are 

partially ordered , since if 𝓒∗ is the family of 
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connective structures of  𝑋,  𝒞1, 𝒞2 ∈ 𝓒∗  then  𝒞1 ≤
 𝒞2 ⟺ 𝒞1  ⊆ 𝒞2, so 𝒞2 is called coarser (weaker) 

than 𝒞1 and 𝒞1 is called finer (stronger) than 𝒞2. 
The weakest Connective structure is the indiscrete 

structure on 𝑋 and the strongest Connective 

structure on 𝑋 is the discrete structure. 

Definition 4.[8]   Let 𝑋 be a non-empty set, and  ℬ 

is a collection of subsets of 𝑋. The strongest 

connective structure on 𝑋 which contains ℬ is 

called the connective structure generated by ℬ, and 

it is denoted by ⟦ℬ⟧  Thus 

⟦ℬ⟧ = ⋂{𝒞 ∶ ℬ ⊂ 𝒞} 
and ℬ is called a basis for the connective structure  

⟦ℬ⟧. 

Definition 5.[8]   Let (𝑋, 𝒞) be a connective space 

. A connected subset 𝐾 of 𝑋 is called reducible  if 

it belongs to the connective structure generated by 

others, that is  

𝐾 ∈ ⟦ 𝒞 ∖ {𝐾} ⟧ 

A non-empty connected subset of 𝑋 is said to be 

irreducible if it is not reducible  

Example 2  The singletons are irreducible sets in 

any connective space  .   

Definition 6   A space (𝑋, 𝒞) is said to be 

irreducible if 𝑋 is an irreducible connected subset 

of itself . It is said to be distinguished if each of its 

non-empty connected subsets is irreducible . 

Example 3   A discrete connective space is 

distinguished space . 

Theorem 1  A connective structure on a given 

finite set is characterized by the set of irreducible 

connected subsets, which is the minimal set of 

subsets which  generates this structure  .  

Proof   Let (𝑋 , 𝒞) be a connective space, and 𝐼(𝑋) 

denote the set of all irreducible connected subsets 

of 𝑋. Then for any 𝒜 ⊆  𝒫(𝑋) such that ⟦𝒜⟧ = 𝒞, 

one has 𝐼(𝑋) ⊆ 𝒜, since each set 𝐶 ∈ ⟦𝒜⟧ which 

is not in 𝒜 is reducible, hence ⟦𝐼(𝑋)⟧ ⊆ ⟦𝒜⟧. On 

the other hand, suppose that 𝐾 is reducible 

connected subset of 𝑋, such that 𝐾 ∈  ⟦𝒜⟧, 𝐾 ∉ 𝒜 

,and since a reducible set belongs to the structure 

generated by others, so 𝐾 ∈ ⟦𝐼(𝑋)⟧, thus ⟦𝒜⟧  ⊆
⟦𝐼(𝑋)⟧  consequently    ⟦𝐼(𝑋)⟧ = ⟦𝒜⟧ = 𝒞. 

For a proof that 𝐼(𝑋 ) is the minimal set of subsets 

which generates 𝒞, suppose that there is a set  of 

irreducible connected subsets 𝐼∗(𝑋 ) such that   𝒞 =
⟦𝐼∗(𝑋)⟧  and  𝐼∗(𝑋) ⊆  𝐼(𝑋), so if  𝐾 ∈ 𝐼(𝑋) is an 

irreducible connected set, then 𝐾 ∈ ⟦𝐼(𝑋)⟧ = 𝒞 =
⟦𝐼∗(𝑋)⟧, hence 𝐾 ∈ 𝐼∗(𝑋), because if 𝐾 ∉ 𝐼∗(𝑋 ) 

then 𝐾 is a reducible. This implies that 𝐼∗(𝑋) =
𝐼(𝑋)  and it is a minimal.                                             

Theorem 2   Let (𝑋,𝒞) be a finite connective space, 

a subset 𝐾 of 𝑋 is a reducible if there are two 

connected sets 𝐴 ⊊ 𝐾 and 𝐵 ⊊ 𝐾 such that 

𝐾 = 𝐴⋃𝐵    and    𝐴⋂𝐵 ≠ ∅ 

Proof   Let 𝐾 be a reducible connected subset of 𝑋, 

then 𝐾 ∈ ⟦𝒞 ∖ {𝐾}⟧, so there are two connected 

sets 𝐶1 and 𝐶2 which belong to 𝒞, such that 𝐾 =
𝐶1⋃𝐶2 and 𝐶1 ⊊ 𝐾 , 𝐶2 ⊊ 𝐾. Now from axiom 

(iii) of definition(1), there exists 𝑥 ∈ 𝐾 such that 
{𝑥}⋃𝐶1 ∈ 𝒞 and {𝑥}⋃𝐶2 ∈ 𝒞.  

Choose 𝐴 = {𝑥}⋃𝐶1 and  𝐵 = {𝑥}⋃𝐶1, which 

completes the proof .                      

Definition 7    Let  𝑋  be a finite connective space 

. A generic point of  𝑋  is a non-empty irreducible 

connected subset of 𝑋. The generic graph 𝐺𝑋 of  𝑋 

is the directed graph whose vertices are the generic 

points of 𝑋, and 𝑎 ⟶ 𝑏 is a directed edge of  𝐺𝑋 if 

and only if 𝑎 ⊋ 𝑏 and there is no generic points 𝑐 

such that 𝑎 ⊋ 𝑐 ⊋ 𝑏. 

Theorem  3  A finite connective space 𝑋 is 

characterized by its generic graph 𝐺𝑋.  
Proof  Let (𝑋, 𝒞) be a finite connective space, every 

singleton is an irreducible connected subset, then it 

is a generic point in 𝐺𝑋 and  𝑋 = ⋃ {𝑎}𝑎∈𝐺𝑋
, but 

(from theorem 1) any finite connective structure is  

characterized by the set of irreducible connected 

subsets, which is the minimal set of subsets which 

generates this structure , so  𝒞 = ⟦𝑎 ∶ 𝑎 ∈ 𝐺𝑋⟧ . 
Now  if  𝐾1 , 𝐾2 are irreducible connected subsets 

in 𝑋 such that   𝐾1 ⊋ 𝐾2 and there is no 𝐾∗ such 

that 𝐾1 ⊋ 𝐾∗ ⊋ 𝐾2, but 𝐾1 , 𝐾∗ and 𝐾2 are generic 

points in  𝐺𝑋, hence it is clearly that (𝐾1 , 𝐾2) is a 

directed edge in 𝐺𝑋. On the other hand, let (𝑎, 𝑏) 

be a directed edge in 𝐺𝑋, so 𝑎 ⊃ 𝑏 are both 

irreducible connected subsets of 𝑋, and if there 

exists a generic point 𝑐 such that 𝑎 ⊃ 𝑐 ⊃ 𝑏 then 

𝑎 = 𝑐 ∪ 𝑏 and 𝑎 is reducible, contradicting the 

irreducibility of  𝑎 

Generally, if the connective space has a generic 

graph then it is called graphical  

Remark 8    The singleton appears as a sink in 𝐺𝑋 

i.e. a vertex with no outgoing edges. 

Note that not every finite acyclic directed graph is 

𝐺𝑋.  For example, the directed acyclic directed 

graph 𝑎 → 𝑏 is not a  𝐺𝑋. Because since 𝑏 is a 

proper subset of 𝑎, then 𝑎 belongs to at least one 

element 𝑥 which different of b, but there is no 

vertex 𝑥 that represents the singleton of  𝑥 .  

 

Example 4   Let 𝑋 = B3 ( Borromean space of 

three points ), such that    𝑋 = { blue, green,  red } 

and  𝒞 = {∅ , {blue}, {green}, {red},  X}, as in the 

following figure ; 

Figure 1 



                            Vol.10 August  2020                                                                   83 

 Then (𝑋, 𝒞) has four generic points which 

identified with the three points in space, the fourth, 

which identified to the whole space . Its generic 

graph is represented by the next figure;  

 
Figure 2 . Generic graph of the space in figure 1 

 

Example 5   The connective space (𝑋, 𝒞) defined 

by  𝑋 = { orange, bud green, olive green, mauve, 

red, pink, green, blue, sky blue }  and  𝒞 =
{∅, {orange},  {bud green}, {olive green}, 

{mauve}, {red},{pink},{green}, {blue}, {sky 

blue}, {orange, bud green, olive green}, {mauve, 

red, pink}, {green, blue, sky blue}, 𝑋}.  

As in the following figure  ;  

 
Figure 3 

 

It is clear that this space has 13 generic points and 

it is generic graph is directed tree as the following 

;  

 

Figure 4 . Generic graph of the space in figure 3  

 

Example 6       Let  𝐴5 ={green, pink, orange, blue, 

sky blue} , and 𝒜5 ={{green}, {pink}, {orange}, 

{blue}, {sky blue}, {green, pink}, {green, pink, 

orange}, {green, pink, orange, blue}, X }. 

The space is represented by the following figure 

 
Figure 5 

 

Then the connective space (𝐴5,𝒜5) has nine generic 

points, and its generic graph is represented by the 

following figure ; 

 

Figure 6 . Generic graph of the space in figure 5 

. 

 

Remark 9     The order of a finite connective space 

is the maximal length of  paths in its generic graph .  

In the previous example, the connective space is of 

order five, while in the example (5), a space is of the 

fourth order. 

iii)  𝑋 is irreducible iff 𝐺𝑋 has exactly one source, 

i.e.  a vertex with no incoming edges.                                                                                                                                        

(iv)  𝑋 is distinguished iff there is no triple (𝑎, 𝑏, 𝑐) 

of distinct vertices in 𝐺𝑋 such that (𝑎 → 𝑏) 

and (𝑏 ← 𝑐)   are in  𝐺𝑋. 

(v)  𝑋 is connected and distinguished iff   𝐺𝑋 is a 

directed tree . 
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